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Abstract The buoyancy-driven magnetohydrodynamic flow in a cubic enclosure was investigated
by three-dimensional numerical simulation. The enclosure was volumetrically heated by a uniform
power density and cooled along two opposite vertical walls, all remaining walls being adiabatic. A
uniform magnetic field was applied orthogonally to the gravity vector and to the temperature
gradient. The Prandtl number was 0.0321 (characteristic of Pb–17Li at 3008C), the Rayleigh
number was 104, and the Hartmann number was made to vary between 0 and 2 £ 103: The
steady-state Navier–Stokes equations, in conjunction with a scalar transport equation for the
fluid’s enthalpy and with the Poisson equation for the electrical potential, were solved by a finite
volume method using a purposely modified CFD code and a computational grid with 643 nodes in
the fluid. Emphasis was laid on the effects of increasing the Hartmann number on the complex
three-dimensional flow and current pattern.
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Nomenclature
B ¼ magnetic induction vector
cp ¼ specific heat
cw ¼ wall conductance ratio, (swsw)/(sD )
D ¼ side length of the enclosure
g ¼ gravity vector
J ¼ electrical current density vector
M ¼ Hartmann number, DB ðs=mÞ1=2

N ¼ interaction parameter,
ðsDB 2Þ=ðrU 0Þ

Pr ¼ Prandtl number, n=a
p ¼ difference between local and

hydrostatic pressure
q ¼ thermal power density
q00 ¼ surface heat flux
Ra ¼ Rayleigh number, gbDTD 3=ðnaÞ
Rem ¼ magnetic Reynolds number, U0Dsh
s ¼ thickness
t ¼ time
T ¼ difference between local and cold

wall temperature
U0 ¼ velocity scale, a=D

u, v, w ¼ velocity components
v ¼ velocity vector
x, y, z ¼ cartesian co-ordinates
Greek
a ¼ thermal diffusivity, l=ðrcpÞ
b ¼ thermal expansion coefficient
d ¼ thickness of the Hartmann layers
DT ¼ reference temperature difference,

qD 2=l
h ¼ magnetic permeability
l ¼ thermal conductivity
m ¼ viscosity
n ¼ kinematic viscosity, m=r
r ¼ density
s ¼ electrical conductivity
t ¼ shear stress
F ¼ electrical potential
Subscripts
w ¼ solid wall
0 ¼ reference value for scaling
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1. Introduction and review of the literature
Free convection magnetohydrodynamic (MHD) flow is encountered in a
number of problems of engineering and physical interest, ranging from
geophysics to metallurgy, crystal growth technology and nuclear engineering
(Moreau, 1990).

As will be discussed later, forced MHD flows are often dominated by a
relatively simple balance between pressure gradients and MHD forces (Müller
and Bühler, 2001). Buoyant MHD flows usually present a greater complexity
and buoyant, viscous, inertial and MHD forces all play a role. Analytical and
asymptotic solutions are known only for the simplest geometrical
configurations, with special reference to those cases in which the problem
can be reduced to a two-dimensional one (Bühler, 1996; 1998; Alboussière et al.,
1996). Interestingly, forced and buoyant MHD flows, respectively, occur in the
two main designs currently being considered for the breeder blanket of fusion
nuclear reactors, namely, the self-cooled concept (Malang and Tillack, 1995)
and the separately-cooled concept (Proust et al., 1993).

Three-dimensional numerical simulations of buoyant MHD flow in a
differentially heated cubic enclosure were presented by Tagawa and Ozoe
(1997). The Prandtl number was 0.025, the Rayleigh number (based on the side
length D and on the imposed temperature difference DT ) was either 105 or 106,
and the Hartmann number M ranged from 0 to 103; the surrounding solid walls
were assumed to be electrically nonconducting. The magnetic field was
orthogonal to the temperature gradient and to the gravity vector, as in the
present work. The authors used a time-dependent, finite difference method
based on staggered grids with up to 463 nodes, which were mildly refined
towards the walls. The predicted flow was unsteady up to M < 100 in the case
Ra ¼ 105; and for all values of M in the case Ra ¼ 106: A slight enhancement
of heat transfer rates (of the order of a few per cent) was predicted for moderate
Hartmann numbers, maximum values being attained for M ¼ 50–100: This
phenomenon was explained by the authors as resulting from the “flow
rectifying” effect of MHD, i.e. from the flattening of the vertical velocity profiles
near the thermally active walls in the presence of a magnetic field. These
computational findings were supported by subsequent experimental studies
conducted in liquid gallium-filled enclosures (Tagawa and Ozoe, 1998a).

In further work, Tagawa and Ozoe (1998b) investigated the influence of the
electrical conductivity of the surrounding walls. The geometry (differentially
heated cubic enclosure) and the Prandtl number (0.025) were the same as in
their 1997 paper, the Rayleigh number was Ra ¼ 105; and the Hartmann
number was 0 or 100; the finite-difference grid included just 323 nodes, of which
only 223 were located in the fluid and the remaining ones in the solid walls. The
authors found that, when the magnetic field was orthogonal to the temperature
gradient, convective flow and heat transfer were significantly suppressed
at M ¼ 100 only if the walls were well conducting (conductivity ratio
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cw ¼ ðswswÞ=ðsDÞ < 0:1 in the present notation), whereas they were little
affected for lower values of cw. On the other hand, a magnetic field parallel to
the temperature gradient was much more effective in suppressing convection
even at low values of cw. For cw larger than ,1, the direction of the magnetic
field had very little influence on the overall heat transfer rates.

Di Piazza (2000) presented a general approach to MHD problems, based on
the implementation of appropriate terms describing the MHD interactions into
a general-purpose CFD code, CFX-4 (AEA Technology, 2000). In order to allow
comparisons with existing analytical solutions, applications were first
presented for a highly simplified geometry, i.e. fully developed buoyant flow
in a vertical duct of square cross section, which is essentially a two-dimensional
problem (Di Piazza and Bühler, 2000). In later work (Di Piazza and Ciofalo,
2002a, b), the same modified code was applied to a more complex and fully
three-dimensional problem (buoyant MHD flow in a differentially or internally
heated cubic enclosure), for which no analytical solution exists.

However, even in these latter applications some limitations were present,
which hindered the straightforward extension of the method to more general
geometries, notably involving curved surfaces. In particular, this regarded the
treatment of the Hartmann layers, thin fluid layers which develop over solid
walls orthogonal to the magnetic field, and in which most of the velocity
gradient is concentrated. Following Leboucher (1995, 1999) the Hartmann
layers were given an ad hoc treatment (HLA approach), which was to include
their electric conductance into that of the solid bounding walls, while
simultaneously replacing the exact no-slip velocity boundary conditions with
free-slip ones. This technique permits one to avoid the fine discretization of the
near-wall Hartmann region, with consequent savings in grid size and
computational effort; however, it meets with difficulties in the presence of walls
which lie neither parallel nor orthogonal to the applied magnetic field, and, a
fortiori, in the presence of curved walls. Moreover, the method cannot be
applied to problems characterized by a low value of the Hartmann number, e.g.
by the presence of a weak magnetic field, since in this case the Hartmann layers
become thick and may cover a significant fraction of the whole computational
domain. The situation is somehow similar to that encountered in the numerical
simulation of turbulence, when models based on “wall functions” must be
replaced by low-Reynolds number models in the case of transitional and
weakly turbulent flows (Ciofalo and Collins, 1989).

In Ciofalo and Cricchio (2001), the ad hoc treatment of the Hartmann layers
was compared with the more general, “direct” method (HLD approach), based
on their resolution by the computational grid. In order to reduce the
computational effort, and to draw comparisons with results in Bühler (1998)
and Di Piazza and Bühler (2000), only the two simple configurations studied
therein (fully developed flow in a vertical square duct with differential or
internal heating) were simulated. Results showed that HLD simulations with 64

Liquid metal free
convection

689



or more grid points along the magnetic field direction (five or more of which
lying within the Hartmann layer) satisfactorily reproduced the flow and electric
potential distributions computed by the ad hoc HLA approach, while at the
same time resolving (rather than postulating) the sharp velocity gradients
which occur in the near-wall regions. In further work (Ciofalo and Cricchio,
2002) the comparison between the two approaches was extended, with similar
results, to fully three-dimensional buoyant flow in a cubic enclosure with either
differential or internal heating.

In the present work, only the “direct” HLD approach was used and emphasis
was laid on the influence of a weak magnetic field, including values of the
Hartmann number as low as 1. This allowed a better understanding of the
incipient modifications of the base flow caused by MHD effects and of
the scaling laws which apply to low-M flows, as opposed to high-M,
MHD-dominated, problems.

Only a low value of the Rayleigh number (104) was considered so that the
base flow obtained for M ¼ 0 was steady and symmetric. In fact, simulations
conducted for Ra ¼ 105 yielded an asymmetric steady-state solution at M ¼ 0:
The possibility that the base, symmetric flow predicted for low values of Ra in
an internally heated cubic enclosure at M ¼ 0 may break down at Rayleigh
numbers higher than ,104, giving rise to either steady but asymmetric, or
even unsteady, flow patterns, is also suggested by several previous studies. For
example, Arcidiacono et al. (2001) conducted high-resolution two-dimensional,
time-dependent simulations for internally heated square enclosures at the same
Prandtl number (0.0321) and found that the base symmetric flow was stable
only up to Ra < 3 £ 105; for Ra ¼ 106 the stable flow configuration was steady
but asymmetric and, for Ra ¼ 1:7 £ 106; transition to time-periodic flow
occurred, while chaotic flow was obtained for even higher values of Ra
ð, 3 £ 106Þ: Since three-dimensional free convection flows are known to be
more unstable than two-dimensional ones (Henkes and Le Quéré, 1996), the
upper limits of existence of the steady symmetric base flow in the absence of
MHD effects may well be of the order of Ra ¼ 105 for the internally heated
cubic enclosure. Similar limits are suggested also for differentially heated
enclosures by the numerical simulations of Tagawa and Ozoe (1997), who, as
mentioned above, found unsteady flow at Ra ¼ 105 not only for the base case
M ¼ 0 but even in the presence of MHD effects up to M < 100:

2. Model and computational methods
The configuration studied (internally heated cubic enclosure) is shown in
Figure 1, where also the nomenclature adopted for the co-ordinate axes are
shown. A fluid of density r, viscosity m, specific heat cp, thermal conductivity l
and electrical conductivity s fills a cubic cavity of side length D, surrounded by
a solid wall of thickness sw and electrical conductivity sw.
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The main dimensionless parameters which characterize the present
problem are the Prandtl number Pr ¼ cpm=l; the wall conductance ratio cw ¼
ðswswÞ=ðsDÞ; the Rayleigh number Ra and the Hartmann number M.

Here, the Rayleigh number can be defined as

Ra ¼ gbDTD 3=ðnaÞ ð1Þ

where b, n ¼ m=r and a ¼ n=Pr are the fluid’s thermal expansion coefficient,
kinematic viscosity, and thermal diffusivity, respectively. Following previous
work (Ciofalo and Cricchio, 2001), the reference temperature difference is
conventionally taken as DT ¼ qD 2=l:

The Hartmann number is defined as

M ¼ DBðs=mÞ1=2 ð2Þ

and represents the square root of the ratio between electromagnetic and viscous
forces. The walls normal to B are called Hartmann walls; in the corresponding
boundary layers, the velocity profile is determined by a balance between
Lorentz and viscous forces. It has been shown that, in the limit of large M, their
thickness scales as M 21. The walls parallel to the magnetic field are called side
walls, and the corresponding boundary layers are called side layers; for large M,
their thickness scales as M 21/2.

Another important dimensionless number is the interaction parameter N ¼
ðsDB2Þ=ðrU 0Þ; in which U0 is a characteristic velocity scale. For the present,
low-Rayleigh number, free convection problem this latter can be identified with
the diffusive velocity scale a=D; therefore, taking into account the above
definition of the Hartmann number M, one simply has N ¼ M 2Pr: The
interaction parameter characterizes the ratio of electromagnetic to inertial
forces; for large values of N these latter (associated with the convection terms in
the Navier–Stokes equations) can be neglected, and the problem depends on
the balance between electromagnetic or buoyant forces and driving pressure

Figure 1.
Sketch of the internally
heated cubic enclosure.
The nomenclature used
for the co-ordinate axes

are also shown
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gradients in the core, with an additional role for viscous resistances in the wall
regions only (Hartmann and side layers). This makes it possible to adopt
simplified asymptotic methods in which separate solutions are sought for the
core and the near-wall flow and are then matched to yield the overall flow field
(Bühler, 1998). In the present case ðPr ¼ 0:0321Þ; one has N ¼ 1 for M < 5:6;
so that inertial terms can be expected to play a minor role only for M much
larger than 5 , 10:

Finally, a last relevant parameter is the magnetic Reynolds number Rem ¼
U 0Dsh; in which h is the fluid’s magnetic permeability. The magnetic
Reynolds number characterizes the ratio of induced to applied magnetic
induction fields (Moreau, 1990). In the present case, by assuming again U 0 ¼
a=D and using the properties of Pb–17Li, one has Rem ¼ ash < 1025: For
such low values of Rem, the induced magnetic field is negligible with respect to
the applied field B, which therefore coincides with the total field, and the flow is
governed by momentum (Navier–Stokes) equations in which the Lorenz force
J £ B (J being the current density vector) is added among the source terms.

Summarizing, in the present work the assumption Rem ! 1 (negligible
induced magnetic field) is adopted, but the assumption N @ 1 (negligible
inertial terms) is not. By using the Boussinesq approximation for buoyancy and
assuming steady-state conditions, the Navier–Stokes and continuity equations
become

rðv·7Þv ¼ 27p þ m72v þ J £ B 2 rbTg ð3Þ

7·v ¼ 0 ð4Þ

Here, v is the velocity vector (u, v, w ), p is the difference between the local and
the hydrostatic pressure and T is the difference between the local temperature
and the reference value for which the density value r holds. This reference
value can be identified, without loss of generality, with the temperature of the
cold walls.

For the current density J, Ohm’s law and the principle of conservation of the
electric charge lead to

J ¼ sðv £ B 2 7FÞ ð5Þ

7·J ¼ 0 ð6Þ

For uniform B, from equations (5) and (6) the following Poisson equation for the
electrical potential F is obtained:

72F ¼ ð7 £ vÞB ð7Þ

The temperature distribution is governed by the enthalpy transport equation:

rcpðv·7ÞT ¼ l72T þ q ð8Þ
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The velocity boundary conditions are those of no-slip at the walls, while the
thermal boundary conditions are:

T ¼ 0 at x ¼ 0 and x ¼ D ð9Þ

Continuity of F and J is imposed at the fluid-wall interface, and the condition
J·n ¼ 0 of zero normal current at the outer surface of all solid walls.

Whenever results for MHD and non-MHD flows have to be compared, the
present formulation of the governing equations is preferable to the
dimensionless form used, for example, in Di Piazza and Bühler (2000) or in
Ciofalo and Cricchio (2001), which was based on magnetic scales; these latter, in
fact, become meaningless for M ¼ 0 (no MHD).

The choice of the computational domain and the related issue of the
problem’s symmetries deserve a brief mention. First, it should be observed that
the problem is apparently symmetric with respect to the mid-plane x=D ¼ 0:5;
parallel to B and located midway between the two thermally active walls.
However, this symmetry holds only for the velocity and temperature fields but
not for the electric quantities; as will be shown in Section 5, electric currents
exhibit a different symmetry and actually cross the above mid-plane, so that
reducing the computational domain to either half of the regions in which this
plane divides the cavity is not feasible.

More complex is the case of the plane y=D ¼ 0:5; orthogonal to B and
located midway between the two Hartmann walls. Although this is not a global
symmetry plane for the present problem (since one of the quantities involved,
the magnetic field B, crosses this plane and is not symmetric with respect to it),
it can be shown by an analysis of the governing equations (and it is confirmed
by the computational results) that y-symmetric solutions exist both for the flow
and thermal fields and for the electrical quantities. Therefore, in principle the
computational domain might have been restricted to either of the regions in
which the plane y=D ¼ 0:5 divides the cavity, with symmetry conditions
imposed on it to velocities, temperature, electric currents and electric potential.
However, as mentioned in Section 1, the possibility of symmetry breaking
leading to y-asymmetric solutions suggested to avoid also for this direction the
recourse to simplifying symmetry assumptions. Thus, in the end the
computational domain was chosen to include the whole of the cubic enclosure.

Equations (3), (4), (7) and (8) were solved by the CFX-4 computer code (AEA
Technology, 2000). The code is based on a finite volume method which allows
for general body-fitted grids (Burns and Wilkes, 1987), although, of course, only
simple orthogonal grids were required for the present simulations. A co-located
grid approach is adopted, i.e. all variables are defined at the centers of the
control volumes, and the Rhie and Chow (1983) algorithm is used to prevent
“chequerboard” oscillations. Pressure–velocity coupling was performed by
means of the SIMPLEC algorithm (Van Doormal and Raithby, 1984); the
second-order central discretization scheme was adopted for the diffusive terms,
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and the third-order QUICK scheme (Leonard, 1979) for the convective terms. At
each “outer” SIMPLEC iteration, the linearized equations were solved by using
a three-dimensional version of Stone’s (1968) “strongly implicit” procedure,
with the exception of the pressure-correction equation which was solved by a
preconditioned conjugate gradient method (Kightley, 1985). Steady-state
conditions were always imposed, and moderate under-relaxation factors (0.85
or larger) were used for all variables.

Following preliminary tests, a grid of 643 nodes in the fluid, selectively
refined towards the walls, proved to yield an almost complete grid-
independence of the results.

In all cases, the residuals of all equations decreased monotonically for 1000–
3000 iterations until they attained final values which were 3–4 orders of
magnitude smaller than those characteristic of the first few iterations;
convergence was somewhat slower at high-Hartmann numbers than at low-
Hartmann numbers. Following this monotonical convergence, residuals started
to fluctuate around their low final values, while flow and electrical quantities at
selected monitoring points exhibited no further significant variations between
subsequent iterations. Computations were halted at this stage; corresponding
CPU times were of the order of 10 h per test case on a 1500-MHz PC with
512 MB RAM.

Special adaptations of the code were required since it does not explicitly
provide for MHD problems; in particular, the electrical potential equation was
solved by using the elliptic solvers normally adopted for the solution of scalar
transport equations, modified so as not to include convection terms. Further
details have been given by Di Piazza (2000).

In the present simulations, the Prandtl number was 0.0321, the Rayleigh
number was set to 104 (for the reasons discussed above), and the wall
conductance ratio cw was set to 0.01. More specifically, the cavity side length
was assumed to be 0.01 m and the physical properties of the Pb–17Li lithium–
lead eutectic ðb ¼ 1:8 £ 1024 K21; r ¼ 9400 kg=m3; m ¼ 2:2 £ 1023 Pa s; l ¼
13 W=ðm KÞ1; s ¼ 7:3 £ 105 Vm21Þ were used for the fluid, which was
assumed to be surrounded by a 0.1 mm thick solid wall having an electric
conductivity equal to s. The power density was thus ,12.6 kW/m3. Different
values were imposed for the Hartmann number M; results will be presented
here for M ranging from 1 to 2000, in addition to the purely hydrodynamic case
M ¼ 0: The value M ¼ 2000 corresponds to a magnetic induction field of
,1.1 T.

In all cases, solid bounding walls were assumed to be electrically insulated
on their outer surfaces and were resolved by just one grid point in the normal
direction. Thermal boundary conditions were directly imposed at the fluid–
solid interface, so that heat conduction in the solid did not have to be modelled.

Most results will be shown in dimensionless form using the following scales,
all chosen in such a way that they depend only on the side length D and on the
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physical properties of the fluid, but not on the magnetic field:

. Length D (side length of the
enclosure)

. Velocity U 0 ¼ a=D (diffusive velocity
scale)

. Time t0 ¼ D 2=a (diffusive time
scale)

. Temperature DT=8 ¼ ðqD 2Þ=ð8lÞ (conductive
temperature
maximum)

. Heat flux qD=2 (average heat flux)

. Current density J 0 ¼ ðmsÞ1=2a=D 2

. Electrical potential ðm=sÞ1=2a=D

. Pressure and shear stress rU0
2

3. Results for M50 (no MHD)
First, computational results will be presented for the case M ¼ 0 (no MHD).
Figure 2(a) shows the in-plane velocity vector plot in the vertical mid-plane
y=D ¼ 0:5; parallel to the Hartmann walls. As could be expected, the main flow
pattern in this section (and in all the constant-y sections parallel to it) consists
of two symmetric rolls, delimited by a central rising plume and by two
boundary layers descending along the thermally active walls. A reference
vector of length 10 U0 is reported above the figure; it can be observed that all
velocities are of the order of U0 at the present, moderate Rayleigh number.

Figure 2.
In-plane velocity vector
plots in selected cross-

sections of the enclosure
for M ¼ 0 (no MHD).
(a) vertical mid-plane

y=D ¼ 0:5; (b) horizontal
mid-plane z=D ¼ 0:5:
Reference vectors are

shown above each graph
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However, a significant secondary flow is also present in the enclosure, as
shown by Figure 2(b) which reports the in-plane velocity vector plot relative to
the horizontal mid-plane z=D ¼ 0:5: The fluid moves from the corners of this
section towards the center of the enclosure, where it is entrained in the central
uprising plume. A reference vector of length U0 is reported above the figure;
secondary velocities are about one order of magnitude smaller than the main
velocities in Figure 2(a).

The overall three-dimensional flow pattern can be better appreciated by
considering the axonometric views of particle trajectories shown in Figure 3.
These were obtained by visualizing some 2000 consecutive positions of two
pseudo-particles, moving along with the fluid and released at t ¼ 0 from two
arbitrary locations, close to the front wall y ¼ 0 and symmetric about the
cavity mid-plane x=D ¼ 0:5: Graphs (a) and (b) show two alternative views of
the same trajectories for 0 # t # 3 D 2=a1; while graphs (c) and (d) are relative
to the subsequent time interval 3 D 2=a1 # t # 7 D 2=a21 (trajectories were
split into two parts for the sake of clarity). The fluid moves from the front wall
to the mid-plane y=D ¼ 0:5 of the enclosure along lines close to the axes of the

Figure 3.
Trajectories of two
pseudo-particles for
M ¼ 0 (no MHD). (a, b)
alternative axonometric
views for
0 # t # 3 D 2 a21; (c, d)
alternative axonometric
views for
3 D 2 a21 # t #
7 D 2 a21: The starting
co-ordinates of the two
particles are x=D ¼ 0:3;
y=D ¼ 0:05; z=D ¼ 0:5
(P1) and x=D ¼ 0:7;
y=D ¼ 0:05; z=D ¼ 0:5
(P2). Small circles
indicate the final
positions
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main circulation rolls, winds outward and comes back towards the front wall in
ample spirals. Of course, a similar and symmetric pattern could be observed for
particles starting from the opposite, back wall y ¼ D:

Taking into account the different physical and boundary conditions, these
flow patterns are coherent with those predicted, for example, by Mallinson and
de Vahl Davis (1977) for the case of three-dimensional differentially heated
enclosures; in this latter case, of course, patterns were simpler since they
involved only a single main circulation cell.

The temperature distributions in the two cross sections y=D ¼ 0:5 and
z=D ¼ 0:5 (corresponding to the velocity plots in Figure 2) are shown in Figure
4(a) and (b), respectively. Values are normalized with respect to ðqD 2Þ=ð8lÞ;
which is the maximum temperature that would be attained in the case of pure
conduction (zero Prandtl number). It can be observed that, at the present
moderate Rayleigh number, peak temperatures are only slightly lower than
conductive ones, and that temperature depends mainly upon the horizontal
direction as under pure conduction conditions; a moderate vertical thermal
stratification is observed only in the central region of the enclosure ðx=D <
0:5Þ: As Figure 4(b) shows, the active secondary flow shown in Figure 2(b) has
only a marginal influence on the temperature distribution, which exhibits
almost parallel isotherms in the horizontal mid-plane. Of course, this is due to
the low-Prandtl number of the fluid ðPr ¼ 0:0321Þ: On the whole, the present
conditions are not far from the limiting case of a zero-Prandtl number fluid, in
which convection would have no influence at all on the temperature
distribution.

Figure 5 shows the distributions of local heat flux q00w (a) and total wall shear
stress tw (b) along one of the side (thermally active) walls. The distributions
are, of course, identical on the two cold walls at x ¼ 0 and x ¼ D: The heat flux
is normalized by its average value qD=2; while the wall shear stress is
normalized by rU 2

0:

Figure 4.
Temperature

distributions in selected
cross-sections of the
enclosure for M ¼ 0

(no MHD). (a) vertical
mid-plane y=D ¼ 0:5;

(b) horizontal mid-plane
z=D ¼ 0:5:

Temperatures are made
dimensionless with

respect to ðqD 2Þ=ð8lÞ
(maximum conductive

temperature)
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Three-dimensional end effects due to the front and back walls are more
pronounced than on the bulk temperature distribution, e.g. Figure 4(b). Peak
values of the wall heat flux do not correspond to peak values of the wall shear
stress; the former are attained very close to the upper end of the side walls,
while the latter are shifted considerably downward ðz=D < 2=3Þ: As could be
expected in view of the low-Prandtl number, the shear stress distribution is
much less uniform than that of the heat flux; the corresponding peaking factor
(ratio of maximum to average values) is ,2 for tw and only ,1.1 for q00w.

4. Influence of magnetohydrodynamics on the flow and temperature
fields
The influence of an external, uniform magnetic induction field B on convective
flow patterns and temperature distributions will now be considered.

First, Figure 6 compares in-plane velocity vector plots for four values of the
Hartmann number, namely, M ¼ 10; 30, and 100 and 1000. The graphs on the
left show the main, two-cell, flow in the vertical mid-plane y=D ¼ 0:5; while
those on the right refer to the secondary flow in the horizontal mid-plane at
z=D ¼ 0:5: A reference vector, proportional to the velocity scale U0, is shown
above each graph. The scale changes from graph to graph so that the largest
vectors have roughly the same length, since the qualitative comparison of flow
patterns, rather than the quantitative comparison of velocity values, is mainly
addressed here. Corresponding cross-sections for the case M ¼ 0 (no MHD) are
shown in Figure 2.

Both main and secondary flow patterns are little affected by MHD effects at
low-Hartmann numbers (e.g. M ¼ 10; graphs (a)–(b)). At higher M the main
circulation cells become more “square” as the flow tends to follow the
boundaries of the enclosure. At the same time, in the horizontal planes

Figure 5.
Distributions of wall heat
flux and wall shear
stress on one of the side
(thermally active) walls
for M ¼ 0 (no MHD).
(a) wall heat flux q00w,
normalized by its mean
value qD=2; (b) wall
shear stress tw,
normalized by rU 2

0
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Figure 6.
In-plane velocity vector
plots in selected cross-

sections of the enclosure
for different values of the

Hartmann number.
Left: vertical mid-plane

y=D ¼ 0:5; right:
horizontal mid-plane
z=D ¼ 0:5: Reference

vectors are shown above
each graph
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secondary velocities decrease considerably in module and tend to align
themselves with the direction of the temperature gradient (i.e. orthogonal to the
magnetic field); four distinct regions appear, alternately characterized by
inward- and outward-directed secondary velocities. At high-Hartmann
numbers (e.g. M ¼ 1000) secondary flows become negligible while the
tendency of the main flow to follow the enclosure boundaries become more
pronounced.

A better quantitative comparison of convective velocities at different values
of M can be drawn by considering Figure 7. Graph (a) shows profiles of the
vertical velocity w along x (i.e. between the two thermally active walls) for
y=D ¼ z=D ¼ 0:5; while graph (b) shows corresponding profiles along y
(direction of the magnetic field) for x=D ¼ z=D ¼ 0:5: Values of w are
normalized by the diffusive velocity scale U 0 ¼ a=D:

It can be observed that w profiles remain almost unchanged up to M < 10:
Only at higher M, central and side velocity peaks decrease as “magnetic
braking” effects become significant, and the thickness of both the side and the
Hartmann boundary layers decreases. A careful comparison of the w profiles
shows that for M ., 50 the thickness of the Hartmann layers decrease
roughly as M 21, while the thickness of the side layers decreases less markedly,
approximately as M 21/2. These trends are in agreement with those amply
reported in the literature for free or forced MHD flows in ducts (Moreau, 1990;
Müller and Bühler, 2001), but the present study shows that they only apply to
relatively high-Hartmann numbers, whereas the influence of MHD on velocity
maxima and boundary layer thicknesses is much less marked at low values of
M ( , 50, say). This issue will be addressed on a more quantitative basis in
Section 5, when results for the electrical currents are discussed.

The influence of the magnetic field on the convective velocities is
summarized in Figure 8, which shows volume-averaged values of the velocity
module jvj as a function of the Hartmann number in the whole range M ¼
0–2000 investigated. Values of jvj are normalized by the diffusive speed a=D;
i.e. by a scale that does not depend upon the magnetic field. For moderate
values of the Hartmann number, up to M < 10; velocities are little affected by
MHD effects. For large M, mean velocities decrease roughly as M 22, in
agreement with classic results obtained by different authors for forced and
buoyant MHD flows. An intermediate behavior is observed at intermediate
Hartmann numbers (10–100).

Figure 9 shows alternative axonometric views of two particle trajectories for
M ¼ 30: The starting points are the same as in Figure 3, which was for M ¼ 0
(no MHD). Trajectories were again split into two parts for the sake of clarity:
graphs (a) and (b) are relative to the time interval 0 # t # 7:5 D 2=a1; graphs
(c) and (d) to the subsequent interval 7:5 D 2=a1 # t # 18 D 2=a1: As in the
case of no MHD, the fluid moves from the front wall to the mid-plane y=D ¼ 0:5
of the enclosure along lines close to the axes of the main circulation rolls, winds
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outward and comes back towards the front wall in ample spirals. However,
secondary velocities are now much lower than for the case M ¼ 0; so that a
longer time elapses, and both particles describe a much larger number of
windings, before they approximately complete their cyclic path. For higher

Figure 7.
Profiles of the vertical

velocity w for different
values of the Hartmann

number. (a) profiles
along x for

y=D ¼ z=D ¼ 0:5;
(b) profiles along y for

x=D ¼ z=D ¼ 0:5:
Values are normalized by

the diffusive velocity
scale U0 ¼ a=D
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Hartmann numbers, e.g. M ¼ 100 or 1000, secondary velocities are so low that
subsequent windings of the particles’ trajectories practically coincide with one
another and it is difficult to visualize overall paths similar to those in Figures 3
or 9.

Temperature distributions in the mid-plane y=D ¼ 0:5 are shown in Figure
10 for four different values of the Hartmann number. As in Figure 4 ðM ¼ 0Þ;
temperatures are normalized by ðqD 2Þ=ð8lÞ (maximum conductive
temperature). At low-Hartmann numbers, isotherms are but minimally
distorted, as can be seen by comparing Figure 10(a) and (b) (M ¼ 10 and 30)
with Figure 4(a) (M ¼ 0; i.e. no MHD). At higher values of M, e.g. M ¼ 100 in
Figure 10(c), vertical stratification is significantly suppressed. Finally, at very
high-M, e.g. M ¼ 1000 in Figure 10(d), a purely conductive temperature
distribution is obtained, in which T is a function of the horizontal co-ordinate x
only.

Figure 11 shows the distributions of the local heat flux q00w along one of the
side (thermally active) walls for the same above values of the Hartmann
number. The distributions are, of course, identical on the two cold walls at
x ¼ 0 and x ¼ D: The heat flux is normalized by its average value qD=2: As
could be expected from the distributions of velocity and temperature, also the
distribution of the wall heat flux is only negligibly affected by MHD effects at
low M, compare Figure 11(a) ðM ¼ 10Þ with Figure 5(a) ðM ¼ 0Þ: For higher
Hartmann numbers, i.e. M ¼ 30 and 100 in Figure 11(b) and (c), isoflux lines
tend to align themselves with the horizontal direction while the heat flux
peaking factor decreases from ,1.10 (M ¼ 0; 10) to , 1.09 ðM ¼ 30Þ and
, 1.04 ðM ¼ 100Þ: Finally, at high-Hartmann numbers, e.g. M ¼ 1000 in

Figure 8.
Volume averaged values
of the velocity module jvj
as a function of the
Hartmann number in the
range M ¼ 0–2000:
Values of jvj are
normalized by the
diffusive velocity scale
a=D
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Figure 11(d), the distribution of q00w becomes practically flat, coherently with the
purely conductive temperature distribution shown in Figure 10(d).

Distributions of the wall shear stress tw on one of the active walls ðx ¼ 0 or
x ¼ DÞ for different values of M are shown in Figure 12(a–d). The wall shear
stress is normalized by rU 2

0: The corresponding distribution for M ¼ 0 was
shown in Figure 5(b). As the Hartmann number increases, peaking factors for
tw decrease from ,2 ðM ¼ 0Þ to just , 1.2 ðM ¼ 1000Þ; at the same time, the
regions of highest shear stress move downward until, for M ¼ 1000; they
practically coincide with the centers of the thermally active walls. Three-
dimensional effects due to the influence of the orthogonal Hartmann walls
remain significant up to the highest values of M investigated, and absolute
values of tw (which are normalized here by a scale which does not depend on
M ) remain relatively high, since not only the near-wall velocity but also the
thickness of the side layers decreases as M increases.

Figure 9.
Trajectories of two

pseudo-particles for
M ¼ 30:

(a, b) alternative
axonometric views for

0 # t # 7:5 D 2 a;
(c, d) alternative

axonometric views for
7:5 D 2 a21 # t #

18 D 2 a21: The starting
co-ordinates of the two

particles are the same as
in Figure 3 ðM ¼ 0Þ; i.e.
x=D ¼ 0:3; y=D ¼ 0:05;

z=D ¼ 0:5 (P1) and
x=D ¼ 0:7; y=D ¼ 0:05;

z=D ¼ 0:5 (P2). Small
circles indicate the final

positions

Liquid metal free
convection

703



5. Electrical currents and Hartmann layers
Figure 13 shows vector plots of the current density J on selected plane cross
sections of the enclosure for the case M ¼ 10 (low-Hartmann number). A
reference vector, proportional to the reference current density J 0 ¼
ðmsÞ1=2a=D 2; is shown; the same vector scaling was adopted for all four
graphs in order to allow a better appreciation of the spatial distribution of J.

In particular, Figure 13(a) shows the horizontal mid-plane z=D ¼ 0:5: Far
from the Hartmann walls at y ¼ 0 and D, the fluid rises throughout the whole
central region of this cross section and descends along the side walls. The
induced electric field v £ B drives currents sv £ B; which are directed from the
right to the left in the central region of the plane, and from the left to the right in
the side layers. These currents are only partly counteracted by diffusive terms
2s7F, in equation (5). In its turn, the interaction of overall currents with the

Figure 10.
Temperature
distributions in the
vertical mid-plane
y=D ¼ 0:5 of the
enclosure for different
values of the Hartmann
number. (a) M ¼ 10;
(b) M ¼ 30; (c) M ¼ 100;
(d) M ¼ 1000:
Temperatures are
normalized by
ðqD 2Þ=ð8lÞ (maximum
conductive temperature)
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magnetic field B yields MHD forces J £ B; equation (3), which are almost
everywhere opposite to the flow direction (braking forces). However, currents
must close themselves somewhere; as Figure 13(a) shows, for the present
moderate value of the wall conductance ratio cw they do this mainly through
the fluid itself in the Hartmann layers at y < 0 and y < D; which lie
orthogonally to the direction of B. The result is that three distinct current loops,
one central and two close to the side walls, can be observed in the proximity of
each Hartmann wall. Note that only two side loops would be observed in the
case of a differentially heated enclosure, as shown, for example, in Ciofalo and
Cricchio (2001), their Figure 5. In the Hartmann layers, the MHD forces are
aiding the main flow instead of braking against it, so that the fluid slips almost
freely on these walls.

Figure 11.
Distributions of the wall
heat flux q00w (normalized

by qD=2) on one of the
side (thermally active)

walls for different values
of the Hartmann number.
(a) M ¼ 10; (b) M ¼ 30;

(c) M ¼ 100;
(d) M ¼ 1000: See Figure
5(a) for M ¼ 0 (no MHD)
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In this and in the following figures, it should be observed that, as anticipated in
Section 2, the mid-plane x=D ¼ 0:5 – which is a symmetry plane for the flow –
is not a symmetry plane for the electric currents, which actually cross it. Two
(approximate) symmetry planes for the electric currents do exist, but they are
located at x=D < 1=3 and x=D < 2=3; i.e. staggered with respect to the flow
symmetry plane.

The remaining graphs in Figure 13 show current density vector plots in
cross sections parallel to the Hartmann walls. Figure 13(b) is for y=D ¼ 0:02;
i.e. well within the Hartmann layer. The near-wall current pattern, coherent
with the above comments, can be appreciated. Currents attain here their
highest values in the vertically intermediate region of the Hartmann layers,
whereas they decrease near the top and bottom walls, in correspondance with

Figure 12.
Distributions of the wall
shear stress tw

(normalized by rU 2
0) on

one of the side (thermally
active) walls for different
values of the Hartmann
number. (a) M ¼ 10;
(b) M ¼ 30; (c) M ¼ 100;
(d) M ¼ 1000: See Figure
5(b) for M ¼ 0 (no MHD)
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Figure 13.
Vector plots of the

current density J on
selected cross sections of

the enclosure for
M ¼ 10: A reference

vector, proportional to
J 0 ¼ ðmsÞ1=2a=D 2; is
shown; all graphs are

drawn using the same
scale for vectors. (a)
horizontal mid-plane

z=D ¼ 0:5; (b), (c), (d)
constant-y planes parallel

to the Hartmann walls:
(b) y=D ¼ 0:02; within

the front Hartmann
layer; (c) y=D ¼ 0:2; in

the core region;
(d) y=D ¼ 0:5; mid-plane
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the turning of the fluid’s velocity from horizontal to vertical or vice versa.
Figure 13(c) is for the plane y=D ¼ 0:2; which lies outside the Hartmann layer;
currents are greatly reduced in size and follow a pattern opposite to that in the
Hartmann layers, and typical of the core region. The dependance upon the
vertical co-ordinate z remains about the same as in the near-wall region.
Finally, Figure 13(d) is for the mid-plane y=D ¼ 0:5; currents are even smaller
in size than for y=D ¼ 0:2; and exhibit a complex secondary pattern.

Figure 14 shows the same vector plots as Figure 13, but for a higher value of
the Hartmann number ðM ¼ 100Þ: Also the constant-y planes chosen for the
current pattern visualization are different, so that the plane in graph (b) ðy=D ¼
0:01Þ still lies within the Hartmann layer while that in graph (c) ðy=D ¼ 0:1Þ lies
in the core region. The vector scale is the same for all four graphs and is
identical to that used for M ¼ 10 in Figure 13, so as to evidence the
considerable increase in the current intensity obtained with respect to that
lower Hartmann number.

The plot relative to the horizontal mid-plane z=D ¼ 0:5; Figure 14(a), shows
intense current “jets” near the corners where the Hartmann walls meet the side
walls; these jets are similar to those predicted in previous work (Ciofalo and
Cricchio, 2001) for the same geometry and a higher Rayleigh number, and can
be correctly resolved only by adopting the present, fully resolved treatment of
the Hartmann layers, whilst they are largely missed in numerical simulations
based on the ad hoc coarse-grid treatment of these layers described in section.
Current loops, in which the current density vectors turn from the direction
followed in the core region to the opposite one characteristic of the Hartmann
layers, are qualitatively similar, but much more intense, than those predicted
for the lower Hartmann number (Figure 13), and have about the same extent.
More generally, as will be discussed later, the thickness of the Hartmann layers
is only slightly less than that observed for the much lower Hartmann number
M ¼ 10:

Also the current pattern in the cross section y=D ¼ 0:01 lying within the
front Hartmann layer, graph (b), is similar, but more intense, than the
corresponding pattern reported in Figure 13(b) for M ¼ 10: However, in the
present case the pattern is almost perfectly symmetrical in the vertical
direction, coherently with the reduced importance of inertial and buoyancy
forces as compared with MHD effects. The current plot in the plane y=D ¼ 0:1;
graph (c), shows small upper and lower regions where the J direction is that
typical of the Hartmann layers rather than that of the core region, which
indicates that the thickness of the Hartmann layers increases above 0.1D in the
proximity of the top and bottom walls.

Finally, corresponding current density vector plots are shown in Figure 15
for the high-Hartmann number case M ¼ 1000: The cross sections in graphs
(b) and (c), respectively, lying inside and outside of the front Hartmann layers,
are located at y=D ¼ 0:001 and y=D ¼ 0:01 since the thickness of the Hartmann
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Figure 14.
Vector plots of the

current density J on
selected cross sections of

the enclosure for
M ¼ 100: A reference
vector, proportional to
J 0 ¼ ðmsÞ1=2a=D 2; is
shown; all graphs are

drawn using the same
scale for vectors.

(a) horizontal mid-plane
z=D ¼ 0:5; (b), (c), (d)

constant-y planes
parallel to the Hartmann

walls: (b) y=D ¼ 0:01;
within the front
Hartmann layer;

(c) y=D ¼ 0:1; in the core
region; (d) y=D ¼ 0:5;

mid-plane
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Figure 15.
Vector plots of the
current density J on
selected cross sections of
the enclosure for
M ¼ 1000: A reference
vector, proportional to
J 0 ¼ ðmsÞ1=2a=D 2; is
shown; all graphs are
drawn using the same
scale for vectors.
(a) horizontal mid-plane
z=D ¼ 0:5; (b), (c), (d)
constant-y planes
parallel to the Hartmann
walls: (b) y=D ¼ 0:001;
within the front
Hartmann layer;
(c) y=D ¼ 0:01; in the
core region;
(d) y=D ¼ 0:5; mid-plane
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layers is much lower than that in the previous cases M ¼ 10 and M ¼ 100:
The scale used for the J vectors is the same as in the above two figures, which
makes it evident how also current intensities are greatly reduced.

Figure 16 shows profiles of Jx (component of the current density vector J in
the x direction) along the mid-line x=D ¼ z=D ¼ 0:5: For the purpose of clarity,
only a few values of M are represented, and the graph is limited to the region
y=D # 0:1 close to the front Hartmann wall. Of course, at very low values of M
it is not completely appropriate to speak of Hartmann “layers” proper; here,
however, these were conventionally identified with the near-wall regions where
the sign of Jx is opposite to that observed in the core region away from the
walls. Note that this is made possible by the moderate value of the conductance
ratio ðcw ¼ 0:01Þ; which causes a large fraction of the electric currents to close
themselves through the near-wall fluid; at much higher values of cw, most of the
currents would close through the solid wall and a fluid region of reversed Jx

would not necessarily exist.
The thickness d of the Hartmann layers, defined as discussed above,

remains about the same ðd=D ¼ 0:07Þ for M ¼ 1 and M ¼ 10 and decreases
significantly only for larger M. The current density, whose peaks are always
attained at the Hartmann walls, reaches its maximum values for M < 10–100
and then decreases for larger M.

The dependence of the Hartmann layer thickness d upon the Hartmann
number M is summarized in Figure 17(a), which shows d=D as a function of M
in the whole range investigated. It is clear that d remains about constant up to

Figure 16.
Profiles of Jx (component

of the current density
vector J in the x

direction) along the
mid-line

x=D ¼ z=D ¼ 0:5: Only
a few values of M are

represented, and the
graph is limited to the
region y=D # 0:1: The
boundary between the

Hartmann layer and the
core region can be

identified in each case by
the inversion of the sign

of Jx
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Figure 17.
Dependence of Hartmann
layer thickness and mean
current intensity on the
Hartmann number in the
whole range
investigated.
(a) Hartmann layer
thickness d; (b) Volume-
averaged value of the
current density module
jJj
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M < 10; then decreases and approaches the theoretical M 21 trend only in the
limit of large M (M . 100; say). Figure 17(b) shows the volume-averaged value
of the current density module jJj as a function of M. It shows that the mean
current intensity increases about linearly with M for low-Hartmann numbers
ðM , 10Þ; attains a maximum for M < 50 and approaches an M 21 trend in
the limit of large M ðM . 100Þ:

6. Conclusions
Numerical simulations were performed for the magnetohydrodynamic free
convection flow of a liquid metal in a cubic enclosure with volumetric heat
generation under the influence of a horizontal magnetic field of different
intensities. A finite volume code, purposely adapted to account for MHD
effects, was used. The 643-volume computational grid adequately resolved the
whole flow field including the Hartmann layers, so that both low-Hartmann
number and high-Hartmann number conditions could be investigated without
changing the grid or recurring to approximate, ad hoc treatments of the near-
wall regions.

For Hartmann numbers M up to ,10, corresponding to values of the
interaction parameter N up to , 3, the flow field was little affected by MHD
effects. In this range, in which inertial forces dominate with respect to MHD
forces, also the thickness d of the Hartmann layers remained about uniform
ðd=D ¼ 0:07Þ while electrical currents increased about linearly with M, i.e. with
the intensity of the magnetic induction field.

At the opposite end of the range, i.e. for M larger than , 100 (corresponding
to values of the interaction parameter N above , 300), MHD forces dominate
and inertial forces become relatively unimportant. In this region velocities were
found to decrease roughly as M 22 and current intensities roughly as M 21.
Also, the thickness of the Hartmann layers (as identified by the inversion in the
direction of electrical currents) decreased approximately as M 21 and that of
the side layers as M 21/2. These trends are in agreement with the predictions of
classic works on high-Hartmann number MHD flows in ducts, mainly derived
under the assumption of negligible inertial terms.

In the intermediate range M ¼ 10–100; the interesting result was obtained
of the existence of a maximum for the intensity of electrical currents. This was
attained at M < 50: The values of the fluid’s speed and the thickness of the
Hartmann and side layers exhibited an intermediate behavior between those
described above for the two ends of the Hartmann number range investigated.

In several works on MHD buoyant flows, magnetohydrodynamic scales
have been used to normalize velocities and electrical currents. For example,
Bühler (1998) chose velocities and current scales which, in the present notation,
can be expressed as u0 ¼ U 0Ra=M 2 and j0 ¼ J 0Ra=M ; U0 and J0 being the
corresponding scales adopted in the present paper. From the above discussion
on the asymptotic trends of various quantities, it is clear that the adoption of
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these magnetohydrodynamic scales yields constant values for the normalized
velocities and electrical currents in the limit of very high values of the
Hartmann number and of the interaction parameter. On the other hand, for low
values of M this approach yields trends which are of little or no significance (for
example, both velocities and currents would appear to increase as M 2 once
normalized by the above scales u0 and j0, and current density maxima would
not be observed). Moreover, both scales diverge for M ¼ 0 and thus are not
applicable to purely hydrodynamic flows, making incipient MHD effects more
difficult to appreciate.

Finally, it should be stressed that the present results were obtained for
specific (and rather moderate) values of the Rayleigh number and of the wall
conductance ratio. While many of the above qualitative conclusions would
remain valid for different values of Ra and cw, the detailed results and the
boundary values of M separating different MHD regimes would obviously
change; further work will have to be done in order to clarify these issues.
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